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On the disturbed motion of a plane vortex sheet 
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(Received 26 March 1958) 

SUMMARY 
A formal solution to the initial value problem for a plane 

vortex sheet in an inviscid fluid is obtained by transform methods. 
The eigenvalue problem is investigated and the stability criterion 
determined. This criterion is found to be in agreement with that 
obtained previously by Landau (1944), Hatanaka (1949), and 
Pai (1954), all of whom had included spurious eigenvalues in their 
analyses. It is also established that supersonic disturbances may 
be unstable ; related investigations in hydrodynamic stability 
have conjectured on this possibility, but the vortex sheet appears 
to afford the first definite example. Finally, an asymptotic 
approximation is developed for the displacement of a vortex sheet 
following a suddenly imposed, spatially periodic velocity. 

1. INTRODUCTION 
The instability of a plane vortex sheet has been investigated for 

incompressible flow in the classical work of Helmholtz, Rayleigh, and 
Kelvin (see Lamb 1945, tj 232,s 268) and for compressible flow by Landau 
(1944), Hatanaka (1949)" and Pai (1954). Each of these last three 
investigations ignored the existence of branch points for the eigenvalue 
equation and accepted the eigenvalues given by its two possible branches. 
We shall establish the proper treatment of the branch points and the ultimate 
character of the motion by considering an initial value problem for the 
vortex sheet and obtaining an asymptotic solution for large time. Our 
results confirm those of Landau, Hatanaka, and Pai with respect to the 
question of stability but rule out certain of their neutral eigenvalues. 

A second feature of the vortex sheet problem that appears to have 
received insufficient emphasis is the fact that supersonic disturbances, 
i.e. disturbances that have a supersonic wave speed relative to the local 
flow, can be unstable. Such disturbances have often been neglected in 
other stability problems on the (sometimes tacit, sometimes conjectured) 
assumption that they could not be unstable, so that it is especially important 
to ascertain that their presence in the results of Landau, Hatanaka, and Pai 
is not a consequence of their failure to deal properly with the aforementioned 
branch points. We also remark that neutral supersonic disturbances of a 
vortex sheet are significant for acoustic reflection therefrom (Miles 1957). 

* I am indebted to Professor I. Imai for a rCsum6 of Hatanaka's paperh which is 
not readily available in the United States. 
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A more direct derivation of the eigenvalue equation could be achieved 
by posing a simple, travelling wave disturbance (see (4.11) below). The 
proper restrictions on the eigenvalue equation (and, therefore, the proper 
conclusions regarding the question of stability) could then be inferred 
from Sommerfeld's finiteness and radiation conditions*, although it is 
to be noted that the propriety of the radiation condition in a stability 
investigation does not appear to have been accepted unequivocally (see 
Lin's remarks quoted in $ 6  below, especially his implied question as to 
the nature of a ' proper restriction ')+. Aside from this question, however, 
the possibilities for even asymptotic solutions of initial value problems 
in hydrodynamic stability appear quite limited, and the vortex sheet is 
probably one of the few such problems that is tractable. 

2. FORMULATION OF THE PROBLEM 

We consider (see figure 1) two ideal fluids occupying the half spaces 
y > 0 and y < 0, designated by the subscripts + and -, respectively, 
and each characterized by its uniform velocity U ,  parallel to  the x-axis, 
sonic velocity a,, and density p+. The vortex sheet separating the two 
fluids is subjected to an initial displacement n,(x) and an initial velocity 
& ( x ) ;  we wish to examine its subsequent motion and, in particular, the 
conditions under which this motion will be bounded (i.e. stable) for large 
time. 

I -u, 
Figure 1. Vortex sheet separating two parallel flows. 

Many of the following equations involve the parameters of only one 
fluid or the other; accordingly, we need include the subscripts k only 
in those equations that involve the parameters of both fluids, with the 
implication that equations devoid of the k subscripts apply to either fluid. 

* I am indebted to Professor G. Carrier for persistently refusing to accept certain 
erroneous conclusions that were improperly inferred frcm the radiation condition 
in the original manuscript. Extensive discussions with Professor Carrier then led 
to the attack on the initial value problem. 

t Stoker (1952, p. 97) has considered an initial value, surface wave problem in order 
to illustrate the validity of the radiation condition in forced oscillation problems, but 
his results do not appear to be directly applicable to eigenvalue problems. 

2 M 2  
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Assuming small disturbances, the perturbation pressure satisfies the 
wave equation 

where ~a a - +u-. E - Z  ax 
The  boundary conditions at the vortex sheet y = n(x, t ) ,  across which the 
pressure must be continuous and to which the fluid motion must be 
tangential, are 

while the boundary conditions at infinity are 

limlpl < m, 
w - * m  1111 .+ m 

limlpJ < cc. 

The initial conditions are 

and an n = n,(x),  = i 0 ( x ) ,  t = 0. 

We require solutions to (2.1) in y < 0 and y > 0 that satisfy equations (2.3) 
t o  (2.6). 

3. THE TRANSFORM SOLUTION 

We define P, the Fourier-Laplace transform of p ,  by 
00 

p ( y ;  m,s) = i erst  dt e-i?nxp(x,y, t )  dx, (3.1 a) 
J o  J - m  

y + i m  1- , e"P(y; wz,s)ds, (3.1b) eimx dm 1 
p(x,y, t )  = Gi 

y - t w  

where y is a positive real number such that all singularities of P lie in 
.&{s} < y. Similarly, we define N(m,s) as the Fourier-Laplace transform 
of n(x,t) and 

No(m) = 1 e-imzno(x) dx, (3.2a) 
m 

- m  

(3.2 b) 

as the Fourier transforms of the initial displacement and transverse 
velocities imparted to the fluids. We also introduce the operator 

S = s+imU, 
corresponding to the substantial time derivative of 
of the wave equation (2.1)) subject to the initial 
reads 

(3.3) 
(2.2). The transform 
conditions (2.5), then 

(3.4) 
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while the transforms of the boundary conditions (2.3), subject to the initial 
conditions (2 .6) ,  read 

P+ = P-, - S2N- SN, - V,. 
P aY 

(3.5) 

Solving (3 .4)  subject to (3 .5)  at y = 0, we obtain 

and N ( m , s )  = (P+/P+)(S+-No + Vo+) + (P-/P-)(S- No + Vo-1 , (3 .7)  Q+ + 8- 
where 

and 
Q = P ~ ~ / P  (3 .8)  

p = {m2 + (S/a)2}1'2,- a{,> > 0. (3 .9)  

Ifum2 I (~+o)(mp- iml)  

Figure 2. Cuts for p(s, m) in the s-plane for 
U < a, m ,  > 0, mz > 0. 

Figure 3. Cuts for p(s, m) in 
the s-plane for m real. 

The condition a{,} 2 0, which is a consequence of the second 
finiteness condition (2.4), will be satisfied everywhere in the complex s- and 
m-planes if we choose the branch cuts from the branch points 

s + i m ( U + a )  = 0 (3.10) 

to be lines on which 9 { p ]  = 0 or, equivalently, p2 < 0 ; the latter condition 
yields 

(3.11 a) 

a2(m; - mg) + (sl - - (s2 + < 0, (3.11 b) 

m = ml+im2, s = sl+is2. (3.12) 

a2ml m2 + (sl - Um2)(s2 + Um,)  = 0, 

where 
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Equations (3.11 a, b) define the cuts as segments of a hyperbola in the 
m-plane for fixed s, or in the s-plane for fixed m ; if m2 = 0 these segments 
degenerate into straight lines in the s-plane, and similarly in the m-plane 
if s2 = 0. The cuts in the s-plane for U < a, m, > 0, and m2 > 0 are 
illustrated in figure 2; if m, < 0 the cuts from (U+a)(m,-im,) and 
- (a - U)(m2 - im,) must be asymptotic to Um, + ico and Um, - i co. The 
cuts for m2 = 0, as in the problem to be considered in the following section, 
are shown in figure 3. 

To be sure, the condition B{p+) 2 0 need not be satisfied everywhere 
in the s- and m-planes but only along the paths of integration for the inverse 
transforms of P* when k y  > 0. We imply here only that it is sufficient 
to choose the cuts defined by (3.11 a, b);  in the final analyses they may 
be deformed in any manner that ensures convergence of the integrals 
and the satisfaction of the second finiteness condition (2.4) by p,. . 

4. SPATIALLY PERIODIC DISTURBANCES 

It suffices, for the question of stability, to consider a spatially periodic 
(fixed m) disturbance. Such a disturbance will result if we assume both a, 
and no to be periodic in x, but the algebra is simplest and the results equally 
illuminating for the special case 

n,(x) = 0, rio(x) = ZiOeirrr, (4.1) 
where vo is the amplitude of an initial, transverse velocity imparted to the 
vortex sheet at t = 0 and u the wave-number (figure 1). We must take u 
to be real in order to satisfy (2.4), and we may assume it to be positive without 
loss of generality. The required transforms of (4.1) are 

No = 0, V,  = 2 m ,  S(m - u) ,  (4.2 1 
where S(m- u) denotes the Dirac delta function. Substituting (4.2) in (3.6) 
and (3.7), writing the inverse transforms according to (3.1 b) and carrying 
out the m-integrations yields 

where m = u in p, S, and Q. 
It is found convenient, especially in relating our results to more 

conventional, travelling wave analyses, to introduce the change of variable 

s = -mc, y = UE, (4.5) 
where c is a complex wave speed. Writing also 

a 
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The branch points and cuts for p are shown in figure 4, as also are its phase 
angles on the axes #{c} = 0 and W{c} = U (the latter is significant for an 
observer moving with the fluid, i.e. in the coordinates x- Ut and y). 

Figure 4. Cuts for /3 in c-plane for m real; the phases of /3 on the real axis and on 
d { c }  = U are indicated in parentheses. 

There are a total of four branch points, namely, c = Uk+a,, U*-a,, 
for the integrands of (4.8) and (4.9). We may assume U ,  > U- without 
loss of generality (if U- > U+ we have only to replace y by -y), and there 
are then four possible configurations of the branch points, corresponding 
to-(see figure 5 )  

0 < U,-U- < a_--+, 

0 < U+-U- < a+---, 

la+-a-l < U+- U- < a++a-, 

A,: 

A,: 

A,: 
B:  a++a- < U+-U-. 

The three possibilities A1,2,3 are not significantly different (in particular, 
as shown in $5, the essential character of the eigenvalues is the same for all), 
but in B we find that it is impossible for a disturbance to be subsonic, 
i.e. IB?{c}- UI < a, with respect to both fluids. We also note that the 
cuts for pF may be deformed freely in evaluating p,, as given by (4.8); 
moreover, only two finite segments of the real axis appeal as cuts for the 
integrand of (4.9), the phase jump of the quantity in square brackets 
vanishing if p+ and /3- are either both real or both imaginary. 
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We now consider the nature of the elementary, exponential disturbances 
from which (4.8) is synthesized. This may be done conveniently in the 
coordinates x- Ut and y, especially if we introduce the transformation 

c = U+asec8, /3 = tane, (4.10) 
under which 

(4.11) 

If 0 is real, as it is for the points on cuts in the c-plane, this corresponds 
to an outgoing (incoming) plane wave of sound in x- Ut and y for 

exp{ia(x -ct  + /3ly[)} = exp(ior sec 0[(x - Ut)cos 0 + /y[sin 8 - at]) .  

RCC) 

7’’’ i A’:: C j  ’ (a++U+) - (a+-U+) (a-+U,) 

A ,  : 0 < U+- U-<a-- a+ 

R IC) - A hr, . , . ,  7-7-r.r 

-(a+- U+) (a-+U-) 
- (a--U-) (a++Ut) 

A*: O<U+-U-<rJ+-O- 

R{C) 
m , , , r  

-(a--U-) (a-+U,) 

A3: la+-a-I<U+-U-< a++a- 

/ -  

- (a+-U+) (a++Ut) 

Figure 5. Cuts for p+ and p- in c-plane for m real. 

sin8 > ( < ) O ;  more generally, points in 9 { c >  > ( < ) O ,  correspond to 
outgoing (incoming) waves that fall off exponentially as lyI -+ co. Of 
course, the total disturbance is confined to jyl < at, for if jy1 > at we may 
close the path of integration in S { c )  > E to obtain 

p(x,y, t )  = 0, lyl > at. (4.12) 
It follows that the envelope of the total disturbance is the outgoing wave- 
front IyI = at, as is otherwise directly evident from the definition of a. 

5. THE EIGENVALUE PROBLEM 

The vortex sheet at y = 0 is stable only if the integrand of (4.9) has 
These poles correspond 

(5.1 a) 

no poles in S { c )  > 0 ;  otherwise it is unstable. 
to  the zeros of 

F,(c)+F-(c)  = p+(c- u+)z/p++p-(c-  U-)2//3- 
= p+a”,p++/31’)+p-~2_(13-+p_’) (5.1 b) 
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and may be identified as the eigenvalues for elementary disturbances of 
the type (4.11) subject to the boundary conditions (2.3) and (2.4). We 
remark that (5.1) does not contain the wave-number and is therefore 
significant for any disturbance that has the phase velocity c. 

We may simplify the algebra considerably, without unduly restricting 
the results, by assuming equal specific heat ratios in the two fluids. Then, 
in virtue of the requirement of equal static pressures, 

and we may factor (5.1 b) to obtain" 

Alternatively, the trigonometric substitution (4.10) yields 

p+a; = p - 8 ,  (5.2) 

(B+ + P-)(P+P- + 1 )  = 0- (5.3 a) 

sin(@+ + 8-)cos(8+ - 0-) = 0. (5.3 b) 
Remarking that these zeros 

must be real in consequence of the finiteness condition 3 { p }  > 0, and 
that ,9+ and ,9- can be of opposite sign only on the real axis interval 
U - + a -  < c < U + - a ,  (which arises only for U+- U- > a++a-),  we 
deduce that 

We consider first the zeros of p++p-. 

, U ,  - U- > a+ +a_. (5.4) a, U- + a- U+ ( a ,  + a -  
p + + p - = O  a t c  = 

(4 ( b )  
Figure 6. Mapping of the upper half c-plane on the P+P--plane. 

This zero corresponds to 8++8- = 7~ in (5.3 b). It clearly represents a 
neutral, supersonic disturbance and was obtained by Landau and Pai 
along with the spurious, real zero of /3+-8- = 0. 

We may investigate the possible zeros of ,9+,9- + 1 (equivalent to those 
of cos(8, - d - ) )  in X{c> 0 by applying Cauchy's principle of the argument 

* The eigenvalue equation considered by Landau and Pai was 

(8+8Y - N P :  - P?.) = 0, 
while Hatanaka considered (P: P? - 1) = 0. 
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to the contour consisting of the real axis of the c-plane, indented above the 
branch points of /3+ and /3-, and a semi-circle of radius tending to infinity 
in  the upper half-plane. This contour and its map on a /3+/3--plane (the 
Cauchy-Nyquist diagram) are shown in figures 6 (a ) ,  ( b )  on the assumption 
U+- U- > a+ + a _ ;  the general shape of the /3+/3- contour is similar for 
the other branch point configurations of figure 5, only the order in which 
the points are traversed changing. It is evident that the /3+/3- contour 
will encircle the point - 1 once if (/3+/3-)D > - 1 (as shown in figure 6 ( b ) )  
or will pass through - 1 twice if ( / 3 + / 3 - ) D  < - 1, from which we infer 
that /3+/3- + 1 must have either one zero in 9 { c }  > 0 or two zeros on the 
real c-axis, respectively. Similarly, we infer from a contour indented 
below the branch points and closed in the lower half of the c-plane that 
/3+/3- + 1 may have one zero in ${c} < 0 if (/3+/3-), > - 1. We also remark 
that both of the /3+/3- contours pass through the point + 1 twice (indepen- 
dently of the location of the point (/3+/3-)D), corresponding to the two 
real zeros of /3+/3-- 1 ; these cannot be equal, being less than U-- a- 
and greater than U ,  + a,, respectively*. 

= - 1 may be determined by requiring 
J?+/3- + 1 and its derivative with respect to c to vanish simultaneously; 
now, however, having proved that /3+/3-- 1 cannot have a double root, 
we may work with p",B"_ - 1 or, more conveniently, 

The  critical point 

1- (c";+)2 - - (*)2 = 0, 

which is readily shown to have the double root 
a2/5 u + a2/3 U . = ( +  a213 - + $13 - +) 

+ -  
at 

(U+- U-)2/3 = a2/3+a2'3. 

We conclude, therefore, that 

(5.5) 

(5.6 a) 

(5.6 b) 

(/3+/3-)D 5 - 1 as ( U ,  - U-)", (aY3 + a!3)3'2. (5.7) 

The  limiting case U+ = U- (= U ,  say) requires special consideration, 
since the two complex conjugate zeros of /3+/3- + 1 then coalesce at c = U. 
We infer that an infinitesimal, tangential discontinuity in a compressible 
fluid will exhibit linear (rather than exponential) instability, thereby 
generalizing Rayleigh's result (Lamb 1945, 3 232) for incompressible flow. 

The  foregoing results are summarized in table 1, and we conclude 
that, subject to the restriction p+a$ = p-aB"_, a necessary and sufficient 
condition for the stability of an inviscid vortex sheet with respect to small 
disturbances is 

j u, - up/ > (a":" + a%3)3/2, (5.8) 
* These last zeros were included in the analyses o f  Landau, Hatanaka, and Pai ; 

indeed, the chief flaw in these analyses, insofar as they aim only at a stability criterion, 
is their failure to prove that the complex zeros of /3$/?1 -1 may be charged to 
/3+/3-+1 alone. 



On the disturbed motion of a plane vortex sheet 547 

in agreement with the predictions of Landau (1944), Hatanaka (1949), 
and Pai (1954)". 

I 

Relative speed range 
Zeros of (5.3) 

I I 

(a:/" + a2/3)3'2 < I u+ - u-/ 
I 

Table 1. The possible eigenvalues of equation (5.3). 

* double root at c = U. 

5 

Figure 7. The stability boundaries of (5.12) and (5.13). 

The explicit determination of the zeros of p+p- + 1 requires the solution 
of a quartic equation, but in the special cave of equal sonic velocities 
$(a+ = a- = a )  this may be reduced to a quadratic equation having the 
roots 

c = g(U++ U-)  k 3a[M2+4-4(M2+ 1)1/2]1'2, M = (U,T U-)/a, (5.9) 
* Neither Hatanaka nor Pai gave the result (5 .8 )  in explicit form, but their final 

results are in agreement therewith. 
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where M is the Mach number of relative flow, which, according to (5.7), 
must exceed 23/2 for stability. 

A special case of greater practical significance than that of equal sonic 
velocities is that of equal stagnation enthalpies (e.g. the vortex sheets in 
shock interaction patterns) where 

2 +q+-= a: * U ? + -  a- 

M* = UJa,, 

Y-1 7 - 1 ’  
Introducing the notation 

m = a,/a-, 

(5.10) 

(5.11) 

and combining (5.10) with (5.6 b), we obtain the parametric representation 

M -  = (Y-1)-1(1+m2!3)-3/2(1 -m2)-+(1  +m2/3 1 3/2, (5.12a) 

M +  = (y--l)-lm-l(l +m2i3)-3i2(l -m2)++m-l( l  +m2i3)3/2. (5.12b) 

This stability boundary is plotted in figure 7 for y = 1.4, as also is 
that obtained by combining (5.10) with U ,  - U- = a+ + a- (see Lin (1953) 
and 9 6 below), namely 

M -  = ~ [ ( 3 - y ) - ( y + l ) m ] / ( y - l ) ,  (5.13 a) 

M+ = +[ - (3 - Y )  + ( y  -t 1 ) ~ - ’ ] / ( 7  - 1). (5.13 b) 

6. THE ROLE OF SUPERSONIC DISTURBANCES 

Supersonic disturbances, defined as those for which 1 9 { c } -  U /  > a, 
have played a somewhat ambiguous role in previous investigations of 
hydrodynamic stability*. Referring to these disturbances for a boundary 
layer, Lin (1955, pp. 70, 71) states that: 

‘‘ One would then expect the disturbance outside the boundary layer 
to be a wave with non-diminishing amplitude at infinity instead of an 
exponential decay of the amplitude. There is no discrete characteristic 
value problem for such disturbances unless some proper restriction is 
imposed. In fact, these ‘supersonic disturbances’ have not yet been 
fully studied. 

In all the existing theoretical analyses of the stability of the boundary 
layer in a gas, supersonic disturbances are assumed to be insignificant. 
This is based on the conjecture that the energy associated with such 
disturbances would propagate from the boundary layer in the nature of 
acoustic waves. Additional theoretical work and experimental evidence 
on this point are highly desirable.” 

If we had presumed the impossibility of unstable supersonic distur- 
bances for our model of a vortex sheet, the condition 

/U+-  U-I > a++a- (6.11 
* If lg{c}-  UI > a the elementary disturbance of (4.11) has a supersonic phase 

velocity, W{c} - U, along the coordinate axis x - Ut. The phase velocity with respect 
to the fluid is [1+ (9{15})2]-1’2(9{c} - U )  ; if c and /3 are both real, the latter velocity 
is equal to the sonic velocity a,  as io directly evident from (4.11). 
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would have appeared a priori as suficient for stability. The more severe 
criterion (5.8) is a consequence of the existence of unstable supersonic 
disturbances for 

a+ + a- < I U,  - U-I < (a? + a!3)3’2. 
This, in our opinion, implies the possibility of their existence in related 
problems of hydrodynamic stability and adds emphasis to the concluding 
sentence in the above quotation from Lin. In particular, we should expect 
(5.8), which constitutes a necessary condition for the stability of a mixing 
region of zero thickness, to be significant for the stability of a laminar 
mixing region of finite thickness with respect to inviscid disturbances 
having wavelengths large compared with the thickness. The latter problem 
has been studied by Lin, who suggested the criterion (6.1) as sufficient 
for stability on the tentative hypothesis that only subsonic disturbances 
could be unstable. It is not clear that the analysis presented here is directly 
comparable with Lin’s*, but the present results certainly enhance the 
desirability of its extension to include supersonic disturbances. 

We remark that the presence of a boundary at some finite value of y, 
such as the wall in the boundary layer problem or the virtual boundaries 
for symmetric and antisymmetric disturbances of a symmetric jet (cf. Pai 
1951), may be decisive for the stability of supersonic disturbances. 
A vortex sheet parallel to a boundary at which either p ,  = 0 or p = 0 is 
considered in the Appendix and is found not to admit neutral, supersonic 
disturbances ; it does not necessarily follow that unstable, supersonic 
disturbances are impossible for this configuration, but it seems likely that 
this also should be so. 

7. ASYMPTOTIC EVALUATION OF n FOR a- = a+ 

We now return to the solution obtained in $4. An explicit evaluation 
of the integrals (4.8) and (4.9) in terms of known functions does not appear 
to be feasible, but an asymptotic development for n is straightforward. 
We may further simplify this development, without losing any significant 
features, by assuming 

so that (4.9) reduces to 
p+ = p- = p, a+ = a- = a, (7-1) 

* In applying boundary conditions, Lin assumes that the displacement of any 
streamline must be small compared with the thickness of the mixing region, so that 
the approximations appear rather different than those adopted here. I t  is possible 
that the approximation of small displacement could be relaxed to one of small stream- 
line slope simply by an implicit change of variable, e.g. a von Mises transformation 
in which y is replaced by the stream function. A second feature of the finite mixing 
region that is absent in the model of a vortex sheet is the inner viscous region (Lin 1955, 
p. 136), where c = U and the inviscid differential equation has a singularity. The 
role of this singularity as the thickness of the mixing region tends to zero would 
require special attention. 
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The symmetry of this special case may be emphasized by shifting to a 
coordinate system (x,,y) that moves with the mean velocity c, of the two 
fluids, where 

We also introduce the dimensionless wave speed w, such that 

where M is defined by (5.9); (7.2) then becomes 

x, = x - c o t ,  c, = i ( U + +  u-). (7.3 1 

(7.4) c = c, + aw, /I* = { (w T i M ) 2  - 1}1/2, E = a&, 

The poles of the integrand are given by (5.9) as 

The complex w-plane, the original path of integration C, and the cuts and 
poles of p+p- + 1 are shown in figure 8 ; if M > Z3/2 the poles lie on the 
real axis between + I4M- 11, rather than on the imaginary axis. 

w = +ih, h = [ ( M 2 + 1 ) 1 / 2 - ( p W + 1 ) ] 1 ' 2 .  (7.6) 

I C 
? 

Figure 8. The %-plane for (7.5). 

If t > 0 we may deform C into the four, clockwise loops C1,2,3,, shown 
in figure 8, plus a contour at infinity in the lower half-plane that makes a 
null contribution to the result. The phases of /I$- on the top and bottom 
of C, are and Qn- and conversely for C, ; hence, the integrals over the 
top of C, and the bottom of C, are found to differ only in the sign of the 
exponent, and similarly for those over the bottom of C, and the top of C,. 
Utilizing these data to combine the four integrals over the tops and bottoms 
of the cuts and evaluating the contributions of the poles with the aid of 
Cauchy 's residue theorem yields 
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sinh(ahat)/X = sin(a 1 h I at)/ 1 h 1. 

5 5 1  

If M > 235 

(7.81 
The imaginary part of the integrand of (7.7) vanishes like Iw - I QM + 11 ( l i 2  

at the end points and has no other singularities or points of stationary phase. 
Accordingly, integrating once by parts and making use of 2.8 (11) in 
ErdClyi’s (1956) monograph, we obtain the asymptotic approximation 

( $ M +  1)aat T - + O[(uat)-5’2] “I 4 
where the sum of the two terms corresponding to the upper and lower 
choices of sign is to be taken. 

We remark that a similar development is possible for the pressures, 
but then (assuming the cuts as in figure 5) the integral will extend along 
the entire real axis, and there will be contributions from points of stationary 
phase ; moreover, if M > 2 the contributions of the poles on the real axis 
(one at w = 0 if 2 < M < Z3I2 or three at w = 0 and k 1x1 if M > Z3I2) must 
first be separated out. 

APPENDIX 
Vortex sheet near boundary 

We remarked in 3 6 that the presence of a boundary at some finite value 
of y may be of decisive importance with respect to the stability of supersonic 
disturbances. We attempt to throw further light on this point for the 
vortex sheet problem by placing a wall at y = - h, so that 

U =  U-,  -h < y  < 0, (A 1 a) 
= u,, y > 0. (A 1 b) 

P, = 0, y =  -h. (A2) 

We then have, in addition to the boundary conditions (2.3), 

Assuming the elementary disturbance of (4.1 1) and imposing (2.3) 
and (A2), the resulting eigenvalue equation is found to be (cf. (5.1 a)) 

If the boundary condition p, = 0 is replaced by p = 0 at y = -h, it is 
necessary only to replace coth by tanh in (A3). 

We remark that: (i) pylcoth( -iuP-h) is a single-valued function of c, 
so that the only branch points of (A 3 )  are at c = U+ t- a, ; (ii) (A 3) reduces 
to (5.1 a) as h+ co unless /3- is real (supersonic, neutral disturbance in 
y < 0), so that (A2) differs from a radiation condition as h+ 00 only if 
p- is real; (iii) there can be no supersonic, neutral disturbances in the 
upper medium, since p+ is real for such disturbances, while the second 
term in (A3) is imaginary for all real c ;  (iv) the statements (i) to (iii) 
remain valid if the hyperbolic cotangent is replaced by the hyperbolic 
tangent. 
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We surmise from the foregoing remarks that supersonic, neutral 
disturbances may not exist for a boundary layer near a fixed wall or for a 
symmetric jet (for either symmetric or antisymmetric disturbances). 
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